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FOREWORD 

This report was prepared by Case Western Reserve University (CWRU), Cleveland, 

Ohio, under USAF Contract No. F33615-87-C-5250. This is the final report summarizing 

the results of research carried out over a period of seven years from February 1988 to 

December 1992. This report covers work carried out by CWRU faculty, staff, and 

students. However, this work was carried out in close co-ordination with researchers in 

the Process Design program of the Materials Directorate of Wright Laboratory, with 

some of the work done on-site at WPAFB. Work was administered by Dr. Steven R. 

LeClair who also contributed to the themes upon which the research was based. Although 

a final report for the entire project, this document nevertheless concentrates primarily on 

work done during the period October 1992 to December 1995. Results obtained prior to 

that have been reported in an interim report WL-TR-93-4021. All along, results from this 

program have also been mentioned in technical reports generated by Dr. LeClair, and 

have been published in technical journal articles. This report is in the nature of a 

collection of very brief discussions each describing an issue and the need for achieving an 

improvement in the matter. The progress achieved in each case and the practical 

significance of the advance are also described briefly. In all cases, details are made 

available through attached reprints of published technical journal articles or with the use 

of software diskettes. 
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1. INTRODUCTION TO REPORT 

This document reports on the results of research carried out over a number of years by 

Case Western Reserve University faculty and students in the area of adaptive distributed 

parallel processing in support of materials research, in collaboration with the Materials 

Process and Design Research group of the Materials Research Directorate of Wright 

Laboratory. The work was carried out over an extended period of time, ranging from 

February 1988 to December 1995. However this document concentrates on the period 

from October 1992 to December 1995. Previous results had been reported in report WL- 

TR-93-3021. 

The keynote of the work was the development of adaptive and self-directed 

computational methods to be used in support of materials research so that the efficiency 

of materials research could be improved significantly. 

It so happens that dramatic advances were being made in the development of neural-net 

computing, evolutionary programming, and other adaptive parallel computational 

methodologies during this span of time. This present research effort was able to 

participate and contribute significantly to the overall flow of events, and this story is told 

and documented with this report. 

The story is multi-faceted and has many inter-related parts. But the essential fact is that 

this program was able to make two major useful contributions to the practice of adaptive 

parallel computing, and also worked to show how these contributions can be used to 

increase the efficiency of materials research. 

One of the two advances is in the area of supervised learning or the training of neural- 

nets for pattern recognition and for function approximation. The idea of use of 



'functional-links' turned out to be a powerful and liberating one, and practice of that 

approach has been of great help in the work reported in this document. The so-called 

radial basis function approach is but a specialized instance of similar practice. 

Another basic advance is the development of a parallel evolutionary stochastic search 

method which also uses simulated annealing to avoid local minima. 

These two advances can be used in combination, for example, to model a technology and 

to point to optimal operating conditions, or to discover optimal material formulations. 

This is described in this report and demonstrated with the help of a software diskette. 

The functional-link approach to learning can dramatically shorten the time required to 

train nets, so much so that rather complicated tasks become feasible. Some such 

applications are described in this document. One application is the use of the functional- 

link for the rapid in-situ interpretation of experimental parameter readings in ellipsometry 

monitoring of molecular beam growth of thin film structures. In another instance, the 

ease of retraining facilitates process monitoring and control tasks; changes in the nature 

of a process, or in the response of a sensor, or in the action of a transducer can be 

detected and modeled adaptively in real time. 

The functional-link approach is discussed briefly in Section 2 of this report, and the 

discussion is substantiated with inclusion of two reprints of technical journal articles. The 

point made in one of the articles is that if the functional-links are volunteered, rather than 

learned, then the network learning task can become a linear one, handled efficiently with 

methods such as conjugate gradient search, in a small number of steps. Both the learning 

and generalization characteristics of the functional-link net are very good, often much 

superior to those of the conventional multilayered net trained with the Backpropagation 



algorithm. The point of the other article is that the functional-link approach can be given 

a rigorous mathematical base. 

There is no question that the generalized Perceptron nodal architecture of such nets is 

responsible for their representation and learning power . There is also no doubt that the 

use of the Perceptron architecture was 'a leap of faith' inspired by the results of 

neuroscience research. A preprint of a technical article entitled 'A Historical Perspective 

on Neural-Net Computing' is attached to this document. 

An application of the functional-link net is discussed briefly in Section 3 of this report. 

The task is the inversion of Fresnel equations for the purposes of estimating the values of 

optical constants and thickness of thin films. Details are provided in a reprint and a 

preprint of technical journal articles made available as attachments to this document. 

Another contribution of this research program is the development of a parallel version of 

stochastic search in optimization computations. This is explained briefly in Section 4 

with the help of an illustration of how the Fresnel equations might also be inverted with 

evolutionary programming. The innovation in this new algorithm is the use of several 

intercommunicating searches proceeding concurrently in parallel, providing guidance to 

each other. Simulated annealing is used to avoid local minima as much as possible. Other 

details are provided in two reprints attached to this report. 

The functional-link and guided evolutionary programming technologies can be used to 

great effect in combination. A powerful and versatile software package used for 

materials formulation and for the design of experiments is based on these practices and is 

commercially available. It is described briefly in Section 5 and a demonstration copy of 

that software, the CAD/Chem system of AI Ware Inc., is appended to this document, 



together with instructions for use. It is but a demonstration copy. [CAD/Chem is a 

trademark of AI Ware Inc.]. 

It is stated in Section 6 that there are perhaps three distinct manners in which neural-net 

computing can be used for the control of nonlinear dynamic systems, these being the 

Backpropagation in time method, the inverse net approach and the optimal control with 

the feedforward net and optimization. These are described briefly in Section 6 and the 

third method is described in some detail in an attached reprint. 

Perhaps the most basic task of data analysis is that of density estimation, namely finding 

out where the data are and finding a way of describing the density of such occurrences 

analytically. Ultimately, it is necessary that such a task be carried out automatically, 

through self organization. This task is discussed briefly in Section 7. It is as yet an 

unsolved problem. In the meantime, one form of self-organization is through clustering, 

and associative memories for materials data and part designs can be implemented with 

use of hierarchical structures of linked clusters. An indication of what might be done with 

such cluster based associative memories is provided through discussion of a multimedia 

associative memory for trouble shooting defects in metal-cast parts. A reprint of a 

conference proceedings paper and a software diskette are provided for that purpose. 

Visualization and display are discussed briefly in Section 8. It is difficult for humans to 

grasp the significance of a body of multi-dimensional data and presentations of that same 

data in some reduced-dimension form is often very helpful. A new dimension-reduction 

method, called the variance constraint method is described briefly in Section 8 together 

with suggestions of use in support of process monitoring and control. A preprint of a 

journal article is provided as an attachment to this report. Summarizing remarks are 

contained in Section 9, and references are listed in Section 10. 



The work of this program has influenced the work of others beneficially. One formal 

indication of that influence is the issuance of one patent to Wright Laboratory and the 

filing of a second patent application by Wright Laboratory. A third is being evaluated for 

filing. Material related to the patent and patent application are available in an attachment 

to this report. 

This report is presented in the form of two volumes. Volume 1 contains the text of all the 

Sections. All the attachments and the two diskettes are contained in Volume 2. 

The titles of all attachments are listed in Section 11. 



2. THE FUNCTIONAL-LINK CONCEPT IN NEURAL-NET COMPUTING 

The Basic Idea 

The single most valuable contribution of neural-net computing to the art of computing is 

undoubtedly the introduction of the practice of function approximation with use of the 

multi-layer feed-forward net, made up of Perceptron-like nodes. The result is that a 

multi-variate function is described simply as a single-variable nonlinear transform of the 

sum of many single-variate functions which in turn are single-variable nonlinear 

transforms of sums of many single-variate functions and so on, recursively, as much in 

depth as required. 

Also, without a doubt, use of that type of nodal network architecture was inspired and 

motivated by the results of perhaps 200 years of research in the neuroscience. An 

account of the development of the use of the multi-layer feed-forward nodal net for 

various pattern recognition and function approximation purposes is given in Attachment 

1, a preprint of an article by Yoh-Han Pao on' A Historical Perspective on Some Aspects 

Of Neural-net Computing'. To date that article has served as the basis for tutorials at 

conferences. 

From 1986 onwards, after the publications of Rumelhart et al [1] and others had 

popularized the practice of the Backpropagation algorithm for learning computational 

models of functions, and after a multitude of practitioners had indeed experienced for 

themselves the efficiency of such nets, it was thought that there was something very 

specific about the multi-layer nature of the net, and that computational power would be 

lost if significant changes were introduced. It was in that environment and under those 

circumstances that Pao and his collaborators [2] introduced the concept of the functional- 

link net. 



Briefly, the suggestion was made that instead of always using a multi-layer architecture 

and the Backpropagation-of-error algorithm for learning all network parameters, one 

might volunteer some nonlinear functional transforms to circumvent part of the tiresome 

iterative parameter adjustment procedure. Thus even a single hidden layer net, such as 

that shown in Figure 1, might be simplified through use of appropriate functional links, 

as shown in Figure 2. 

r-     ! h tK target values 

i°i 0k                         ^t 
°K outputs 
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X! K                                 ' <N 

Figure 1 Single Hidden-Layer Feedforward Net. 
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Figure 2 Functional-Link Net with Enhancement Nodes. 



The critical point is that parameters in the functional-links do not have to be learned 

iteratively and laboriously. As illustrated in Figure 2, the learning task becomes a linear 

one, and elegant and efficient algorithms such as that of conjugate gradient search 

become valid for use. 

It turns out that the functional links might even be chosen 'randomly' within constraints. 

An account of a 'random vector' version of the functional-link approach is contained in 

Attachment 2, a reprint of a Neurocomputing publication by Pao et al [3] on 'The 

Learning and Generalization Characteristics of the Random Vector Functional-link Net'. 

In that article, it is shown that a functional link net can be trained very rapidly and can 

have good generalization characteristics. Subsequently Igelnik and Pao [4] provided a 

rigorous theoretical basis for that approach, as described in Attachment 3, a reprint of an 

IEEE Transactions paper entitled "Stochastic Basis Functions and the Functional-link 

Net". 

The concept of the Functional-link net has been a liberating one, allowing for 

experimentation outside of the strict practice of the Backpropagation-of-Error algorithm. 

Depending on the circumstances, the nature of the functional-links could be quite 

different from one case to another. In some instances, localized functions such as 

Gaussians would be convenient and appropriate; in other cases, distributed functions 

would be more efficient and in yet other cases, functions such as wavelets would provide 

some measure of both localization and distribution. Currently, at the time of preparation 

of this report, the use of 'radial basis functions' has become very popular, and these are 

used and misused widely. However, in fact, these can be regarded as one instance of the 

functional-link approach. 



Actually, by themselves, the so-called 'radial basis functions', such as Gaussians, are not 

legitimate basis functions, and there is no theoretical justification for using a small finite 

number of such functions for providing a basis for a complex non-linear function. Indeed 

there would need to be an exponentially large number of such functions to provide an 

adequate basis for description of a multivariate function. It is the limit integral and the 

Monte Carlo method for evaluating that integral, as described in Attachment 3, that 

provides the theoretical justification for such an approach and also provides guidance on 

how to choose the relatively small finite number of 'basis' functions'. 

The Functional-link approach has been used extensively to advantage in the work 

reported in this document. 

Relationship tn the, Kolmog™™/ Superposition Theorem 

In this subsection, we pause to examine whether the supervised learning functionality of 

neural-net computing is indeed a new contribution to the practice of computing, or 

whether perhaps it might be some previously known method, renamed. 

In the case of supervised learning, the question is whether it is possible to infer the values 

of a function over a continuous domain, given only values of that function for a discrete 

set of sample points in that domain. This task might be viewed as reconstruction of a 

function, or learning a function, or function approximation. The task is very difficult if 

the function is a multivariate one; but that functionality is very much needed in 

information processing. It is the essence of modeling, estimation, prediction and other 

related tasks. 



It is known from Shannon's Theorem [5] that a one-dimensional band-limited function 

can be reconstructed in total over the entire continuous domain from values of the 

function at a discrete set of sampling points. Extension of Shannon's Theorem to the 

multidimensional case can be done in a straightforward manner, to yield a procedure 

which grows exponentially in computational complexity with (linear) increase in the 

number of dimensions; that is one aspect of what is sometimes referred to as the 'curse of 

dimensions' [5]. It is to exorcise this curse that it seemed the supervised learning 

functionality of neural-net computing had to be invented and it was attempted at first in 

an empirical manner because of inspiration from the neuron doctrine. The present 

question is whether similar procedures had already been proposed and made available by 

traditional mathematical methods. 

The answer is very interesting. It develops that Kolmogorov [6] and Sprecher [7] had 

proved remarkable results regarding the representation of continuous functions of several 

variables. The Kolmogorov Superposition Theorem proved that such multi-variate 

functions can be expressed as superposition of functions of one variable and by sums of 

functions. 

In particular Kolmogorov proved the following theorem: 

Theorem (Kolmogorov). There exist fixed continuous increasing functions  \ffqi{x), on 

/ = [0,1] such that each continuous function / on Is  can be written in the form 

9=o 

25 

Q 5>„-M 
i=i 

(2.1) 

10 



where the &? are properly chosen continuous functions of one variable. 

Sprecher showed that the V9, functions could be replaced by ^, yielding a stronger 

version of Kolmogorov's theorem: 

Theorem (Sprecher). There exists constants l> and fixed continuous increasing functions 

<p       1 = [0,1] such that each continuous function / on Is can be written in the form 

f{xv...,xs) = ^g, 
=0 

X^M 
;=i 

(2.2) 

In this theorem, the ^functions depend on /. The constants A,, and the functions <f>q do 

not depend on /, and are universal functions which can be used for any / function. 

The original Kolmogorov theorem can diagrammed as a feedforward net shown in 

Figures 3, for comparison with a conventional multilayer feedforward neural net of the 

Perceptron type, shown in Figure 4. In analogous manner, a functional-link net or basis 

function net would correspond to the depiction of Figure 5. 

The net for the original Kolmogorov result indicates that it is possible to represent a 

multivariable function as the sum of a finite number of single variable functions, each of 

which is a function of a sum of a finite number of universal single variable functions, 

functions which do not vary in form with the task at hand. This is a marvelous result 

except for the fact that the single variable functional forms are not known and there is no 

practicable constructive procedure for developing those functions. 

11 



It is not known if those mathematics results had any effect on the evolution of neural-net 

computing prior to the resurgence stage. More recently, Hecht-Nielsen [8] drew attention 

to the relevance of the Kolmogorov and Sprecher results to neural-net computing, and 

Sprecher [9] reported on yet another formulation of the Kolmogorov theorem, 

simplifying it further and bringing it closer to the format of the Perceptron and neural-net 

architecture. 

In retrospect, it must be admitted that the multilayer feedforward net with Perceptron 

nodes is a genuine original contribution inspired by biology rather than by mathematics. 

The results of Kolmogorov and Sprecher are reassuring and supportive on the one hand, 

and are challenging on the other, showing how simple function approximation could be if 

we only knew the correct functional forms of the various 'basis' functions. Of particular 

interest is the fact there exist 'universal' functions at the lower level which do not depend 

on the problem, but can serve for all the function approximation tasks. 

12 
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Figure 3 The original Komogorov Theorem. 
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Figure 4 Single Hidden Layer Feedforward Net. 
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Figure 5 Basis Function Expansion and Functional-Link. 
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3. APPLICATIONS OF THE FUNCTIONAL-LINK APPROACH 

Parameter Interpretation: Inverting the Fresnel Equations for Interpreting Ellipsometry 

Data. 

The multilayer feedforward neural-net can be used in a number of ways for various 

applications, one of which is that of process parameter interpretation. 

This subsection of this report describes the use of neural-net computing as an enabling 

factor in a scheme for real time monitoring of the growth of multi-layer thin film 

structures of semiconductor materials. 

The films in question are grown with Molecular Beam Epitaxy (MBE) or with variations 

on the theme[10].Tn such growth, components of the semiconductor components are 

heated in crucibles so that vapors are produced in the separate chambers. Shutters are 

opened alternatively in controlled manner to produce molecular beams of the component 

compositions. Conditions can be found so that thin semiconductor films of the desired 

stochiometry are grown on heated substrates in a controlled manner. The films can be of 

uniform thickness and can be formed in superlattices with the thickness of individual 

layers varying from about 10 Angstroms to about 3000 Angstroms or so. 

In such operations, the crucible temperatures, vapor pressures, shutter timing and 

substrate temperature all need to be controlled if the desired compositions, film thickness, 

and physical properties are to be attained. This means, in turn, that accurate in-situ 

monitoring is essential and it seems that optical ellipsometry is suitable for providing 

some aspects of that essential in-situ monitoring[ll][12]. In particular, the polarization 

parameters of light reflected from the surface of such film structures can be interpreted to 

yield information on the complex refractive index of the film being grown. That 

16 



particular interpretive action may be achieved in a number of ways but it can also be 

carried with use of the functional-link net, and that practice is described in this 

subsection. 

Detailed accounts of this approach have been presented at Symposia and have been 

published in technical journals. A brief technical discussion is contained in Attachment 4, 

and a preprint of a more detailed IEEE Transactions paper is available as Attachment 5. 

For the present qualitative purposes, it suffices to say that when a beam of circularly 

polarized light is reflected from the surface of a material with a complex refractive index 

(a partially absorbing material), the reflected beam is observed to be elliptically 

polarized. This is because the in-plane and out-of-plane components of the incident beam 

are reflected with different reflectances and an additional phase shift is introduced 

between the two components. Given the refractive index of the substrate and of the film, 

and the thickness of the film, it is possible to calculate the ellipticity parameters with use 

of the Fresnel equations. The question is how to invert the procedure, so as to be able to 

infer knowledge of the film refractive indices and thickness, given one or more sets of 

ellipsometry readings. 

It is suggested that neural-nets be used for inverting the Fresnel equations. The validity of 

the procedure can be demonstrated readily with calculated results. Of greater interest is to 

ascertain how that method functions with noisy data. 

The experimental situation is illustrated schematically in Figure 6. 

17 
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Figure 6 Illustration of Reflection from a Composite Structure. 

In the attachments, it is explained why several sets of the ellipsometry parameters are 

required if the refractive indices and thickness of the film are to be estimated. This 

requirement has a precise theoretical basis but also helps in coping with noise in the data. 

As shown schematically in Figure 7, the task is really quite difficult. Given (say) four sets 

of values for psi and delta, a neural net is asked to estimate the asymptotic end point of 

the psi-delta spiral, which can be readily translated to yield the n and k (refractive 

indices) values of the film. 

A simple neural-net architecture for the inversion estimation problem is illustrated in 

Figure 8. 

Extremely accurate inversion can be obtained rapidly with functional-link neural-nets and 

this approach is feasible especially if the same range of (n, k) values are encountered 

from experiment to experiment. Otherwise, the extensive training of the nets can be a 

burden even with the use of the function-link methodology. This method is not robust 
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against the occurrence of noise in the ellipsometry readings. More is said about noise in 

Section 5. 
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Figure 7 Input and Output Parameters Used in Neural Net. 
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Figure 8 Neural Net for Inverting Fresnel Equations. 

System Identification and Noise Cancellation 

Two additional applications are described in Attachment 6. The tasks addressed are those 

of 'system identification' and 'noise cancellation', both interesting and challenging tasks, 

made more readily feasible through use of neural net computing, especially with the use 

of the functional-link net. 

In traditional Systems and Control theory, the words 'system identification' usually refer 

to the task of parameter estimation, estimating the values of the parameters used in the 

model postulated for the process in question. In contrast to that, in neural-net computing, 

system identification refers to the task of learning a computational model of the process. 

In other words, by observing the time dependent input signal and the corresponding time 

dependent output signal, the neural-net attempts to formulate a computational procedure 
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which will effect that same transformation, through computation rather than through the 

'physical' process. The publication of Attachment 6 describes in detail the considerable 

success achieved for this type of task for a variety of processes and for a variety of input 

signal types. This is a capability of use in the control of materials processes. 

The work on noise cancellation is very intriguing and deserves further study. The 

situation is that where a low amplitude signal is drowned in large noise but a measure of 

that same noise is available through another channel, the second source being free of 

signal! Although the two noise channels have the same origin, there may be, and there 

usually are, intervening distorting processes in one or both channels. The task is to use 

the 'pure' noise channel to predict what the noise should be on the other channel, the one 

with signal mixed in. One attempts to cancel out the noise , to reduce in fact the output of 

the difference to zero. One finds that one fails to do so, and the residue, representing the 

failure, is in fact the signal to be recovered out of the very noisy environment in which it 

was originally submerged. The results exhibited in Attachment 6 are extremely 

interesting and are worthy of further examination 
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4. GUIDED EVOLUTIONARY PROGRAMMING 

Overview of Optimization Algorithms 

This present program was also able to make a significant useful contribution to the art of 

optimization. This new method of nonlinear optimization is called guided evolutionary 

programming with simulated annealing (GESA) and has been of great help in the various 

applications efforts which this program has interacted with. 

Traditional techniques for nonlinear optimization are: 

o Newton-Raphson 

o gradient search 

o conjugate search 

o stochastic search 

Common to the first three of these techniques is that they require an analytical description 

(or an implementation with good numerical accuracy) of the problem. Gradient search 

and conjugate search have been applied successfully to many, many tasks, even to the 

task of training neural networks [13]. They are guaranteed to converge to minima, which 

are likely to be local minima. Conventional stochastic search has the advantage of not 

getting easily trapped into local minima but the convergence rate is usually very slow 

because of the lack of guidance in the search. 

The GESA algorithm is also a form of stochastic search but benefits from the availability 

of guidance in its search and is also less prone to being trapped in local minima. In this 

matter, it borrows and benefits from the practices of Evolutionary Programming (EP) 
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and Simulated Annealing (EP). Those two practices were inspired by considerations of 

processes of nature. The first has its origin in biological evolution and the second is based 

on considerations of the processes of relieving internal strains induced in solids in 

cooling or in crystallization. 

A brief overview of the paradigms of EP and SA is given in the following to provide a 

background for description of GESA. Related to all this is the paradigm of Genetic 

Algorithms (GA). 

Goldberg [14] has popularized the use of Genetic Algorithms (GA) which are based on 

the mechanisms of genetics and natural selection. Each solution, described as a parent or 

child, is coded as a binary vector (a string). Fogel [15] is associated with a paradigm that 

is called Evolutionary Programming (EP). It is based on Darwin's evolution theory. These 

two paradigms are basically the same and the basic algorithm is shown in Figure 9 

generate N number of initial parents 
repeat 

generate M children from the parents 
(distributed among parents according to some measure of 
merit of parents) 
evaluate all N+M solutions 
select the N best solutions as parents for next generation 

until solution is found 

Figure 9 A Skeletal Form of The Basic GA/EP Algorithm 

The conceptual difference between GA and EP is in the way children are generated. In 

GA a child is generated by combining two parents (crossover) and then applying a 

random change (mutation). In EP a child is generated from one parent by a random 

change. In addition to that, GA has fixed on the idea of representing a solution as a binary 
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string. This has the disadvantage that the representation is discrete, which means that 

GA's primary application area is that of combinatorial optimization. Therefore in 

continuous optimization, a somewhat strained implementation is enforced. It has been 

argued whether GA or EP is best, in other words if crossover is good or bad. No 

definitive answer has been given. The question of which one to choose seems to be 

problem and implementation dependent. 

By applying a Monte Carlo simulation procedure [16] to annealing, Kirkpatrick, Gelatt 

and Vecchi proposed the Simulated Annealing (SA) [17] technique for use in 

optimization. The algorithm is listed in Figure 10. 

set initial temperature t 
generate randomly a solution 
evaluate the solution -> y^, 
repeat 

repeat k(t) times 
generate a new solution from the current best solution 
evaluate the new solution -> ybes, 
accept the new solution as current best solution if 

exp[-(>W-yfc„,)/f]>/> 
decrease t 

until solution found 

Notations: 
t is the temperature 
ynw >ybest are trie objective values of the new and current best solutions 
respectively. 
p is a random number uniformly distributed between 0 and 1 

Figure 10 The Basic SA Algorithm 

In the form exhibited in that figure, a lower objective value is a better one. The condition 

for checking if a new solution is going to be accepted as the current best solution is: 

4 
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accept if exp[-(y„e>v-ybesr)/t]>pe[0,1] (4.1) 

The purpose is to always accept a new solution if it is better than the best current one, and 

with a probability proportional to how good it is, also accept it even if it is not as good as 

the current best solution. 

The two paradigms, GA/EP and SA are very similar and are the basis of the GESA 

algorithm. 

Before proceeding to describe and explain GESA, a comparison is made of the GA/EP 

and SA algorithms. A good optimization technique should be guided, it should have the 

ability to escape from local minima and the ability to converge to a solution with 

arbitrarily good accuracy. The following comparison is based on these three criteria and 

the similarities and differences are explained. 

o Regarding ability to escape from local minima. 

GA/EP: does not have any special mechanism for that but parallelism would decrease the 

probability of getting trapped in local minima. 

SA: is not parallel but a trial solution might be accepted even if it is not as good as the 

current best solution, this is because of the rule given by expression 4.1 

o The issue of how the process is guided so as to generate new trial solutions in the more 

promising regions. 
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GA/EP: Only the best solutions become parents. To that extent there is some guidance in 

GA. 

SA: A better solution has larger probability of becoming the 'parent' for the next 

generation. 

o Regarding the speed and accuracy of convergence. 

GA7EP: No special mechanism. 

SA: Convergence to global minimum is assured in principle, but only in an asymptotic 

sense given infinitely long periods of search. 

Guided Evolutionary Programming with Simulated Annealing Algorithm 

Many algorithms have evolved from the original GA/EP and SA concepts. The GESA 

algorithm is one of these, perhaps are particularly attractive one. It combines the best 

characteristics of GA/EP and SA synergistically, by introducing the concept of many 

different families carrying out searches concurrently in parallel. Comparison of the 

quality of solutions being obtained by the different families provides guidance to the 

entire effort of how to allocate search resources to more promising localities. This is not a 

characteristic which can be duplicated by searching longer. Simulated annealing prevents 

too early a dismissal of seemingly non-promising localities. The algorithm is well suited 

for implementation in parallel computers of the SIMD (Single Instruction Multiple Data) 

type because the total number of children is kept constant. 
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One form of the GESA algorithm is listed in Figure 11. There can be many slightly 

different variations of the theme. For example, in the choice of parents, it could be 

stipulated that the current parent could also compete for the role of being the parent for 

the next generation. There is also a decision to be made whether families die out or not. 

The mode of generation and especially the details of how that varies or do not vary with 

temperature can be specified in slightly different ways. 

The performance of GESA has been compared experimentally with those of other 

algorithms in combinatorial and continuous optimization tasks [18] as well as in resource 

allocation applications [19]. The conclusion of these benchmark investigations is that it 

can compete well with GA, EP, SA and Hopfield Net procedures in continuous as well as 

combinatorial optimization tasks. 

Copies of the two cited GESA references are available as Attachments 7 and 8. 

Applications Including Interpretation of Noisv Ellinsometry Data 

Two applications of GESA are mentioned. One being the use of GESA for learning 

network weights in the training of a multi-layer feedforward neural net. This works 

perfectly well but might be considered to be less efficient than the functional-link or 

radial basis function approaches in well structured circumstances. The GESA approach 

might be the appropriate one for more irregular and more complex net architectures. 

Some results of studies have been published, one publication being that of Yip, P. P. C. 

and Y. H. Pao, entitled 'A perfect integration of neural networks and genetic algorithms' 

published in Artificial Neural Nets and Genetic Algorithms, Pearson and Steel (eds.), pp. 

88-91, Springer-Verlag, 1995, and also in Proceedings of the 2nd International 

27 



Conference on Artificial Neural Networks and Genetic Algorithms,  April 18-21, 1995, 

Ales, France. 

main algorithm: 
set initial temperatures f,_f2 and/3 

generate randomly N parents 
evaluate these parents 
repeat 

for each family do 
generate children* from parent by a random change that is 
proportional in some manner to t3 

evaluate these children 
find the best child 
accept this child as the parent for the next generation if 

exp[-(ynw-yter)/r,]>p 
find the number of children that will be generated in each family in 

the next generation by calling the subroutine 
decrease the temperature coefficients 

until solution found 

* the number of children is M the first time 

subroutine: 
for each family I do 

acCj = 0 

for each child in family   i do 
if cxp[-(ychild-ybest)/t2]> p 

then acCj = acci +1 

sum_acc = Y" acci 

for each family / do 
the number of children in next generation is 

M*N • acCj I sum _ ace 

Notation: 
tvt2 andf3 are the temperatures 
N is the number of children 
M is the average number of children in each family 
ynew ^best md >'cuid are objective values (lower is better) 
ybes! is the objective value for the globally best solution found so far 
acc{ is the number of accepted children in family I 
sum _ ace is the total number of accepted children 

Figure 11 The GESA Algorithm 
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In another interesting and useful application , the GESA algorithm was used to obtain 

estimates of the optical constants of thin films being grown on a substrate. The 

experimental conditions are the same as those described in Section 3, and in Attachments 

4 and 5, but circumstances are such that there is much noise. Under those conditions, the 

accuracy of the estimated values for n and k, the real and imaginary parts of the refractive 

index can degrade significantly with increase in noise. It was found that for those 

circumstances, GESA can be used to great effect. 

Overall, the procedure is a sort of non-linear regression, but with a difference. In 

traditional nonlinear regression, one postulates a model and then tries to find the best set 

of values for the model parameters so that the process in question is replicated as best as 

it can be. In the present case, the model is known; the trajectory for the Fresnel 

parameters is a spiral. The precise form of the spiral depends on the values of the film n 

and k, and of course also on the film thickness. GESA can be used to advantage to 

determine the optimum values of n and k, such that the sum of the squares of the 'errors' 

in the placement of the data points be at a minimum. In other words, in Figure 12, all the 

data points would fall a single spiral if there were no noise in the data. Given that there is 

noise, the task is to determine the 'perpendiculars' from the points to the spiral and find 

that spiral for which the sum of the squares of the deviations is a minimum. GESA 

achieves that task well. Some results are exhibited in Table 1 for the noisy data shown in 

Figure 12. 

In Table 1, the values exhibited in each row represent the values of the refractive indices, 

real and imaginary parts, for the pseudo substrate and for the film material. The values in 

the column MSE are indicative of the irreducible noise in the measurements as made 

evident from the distance of the data points from the best spiral. All values were obtained 
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with use of GESA. Seven consecutive data points were used for each estimation 

operation. 

This method is the only successful single wavelength technique capable of yielding 

accurate estimates of optical constants for noisy data. 

167.5 

S     165 4 

162.5 
137        138        13.9 14 14.1 142        14.3        14.4        14.5        14.6        14.7     ■, 

Psi 

Figure 12 Noisy Ellipsometry Data. 
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Table 1 Estimates of Pseudosubstrate and Film Optical Constants 

GESA(50 iterations, 10 families , 10 children) 

ns ks nf kf MSE 

4.308479 0.479483 4.289525 0.501549 0.004215 

4.317444 0.500452 4.281033 0.606694 0.006013 

4.351112 0.531003 4.254094 0.6229 0.002024 

4.363045 0.571209 4.240501 0.612749 0.014641 

4.358186 0.617562 4.284027 0.602418 0.002722 

4.330631 0.65044 4.294611 0.579446 0.003056 

4.293939 0.653908 4.281381 0.602237 0.008632 

4.266227 0.648776 4.305117 0.564677 0.004647 

4.180917 0.582457 4.162605 0.827471 0.085035 

4.219191 0.582555 4.26225 0.611928 0.011766 

4.218979 0.551111 4.275157 0.639098 0.007338 

4.22225 0.519464 4.235114 0.61458 0.028134 

4.260075 0.519567 4.281833 0.592483 0.006377 

4.29939 0.523912 4.306261 0.541538 0.012133 

4.31369 0.527614 4.299119 0.57799 0.003927 

4.322211 0.542275 4.283049 0.592842 0.003949 

4.333405 0.557471 4.2865 0.594473 0.003409 

4.343277 0.579774 4.29328 0.526521 0.003224 

4.327979 0.583742 4.264687 0.564518 0.007897 

4.315785 0.602803 4.32217 0.534342 0.008935 

mean 4.2751157 0.5955227 0.0114037 

std dev 0.034137894 0.065026582 0.018327729 
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5. APPLICATION OF FUNCTIONAL-LINK AND GUIDED EVOLUTIONARY 

PROGRAMMING TO MATERIALS FORMULATION 

The activities of this research program were carried out in close co-ordination with those 

of the Materials Process and Design program of Wright Laboratory, and as a result there 

were many opportunities for testing its methodologies on real tasks, to assess the validity 

of its results and the efficiency of its procedures. 

As a result of interactions with the Materials Directorate and with Case Western Reserve 

University, a neural-net computing company has developed a powerful and easy-to-use 

computer software package for optimal formulation of material compositions. The 

CAD/Chem [trademark of AI Ware, Inc.] system utilizes the Functional-link and GESA 

paradigms to help materials researchers design new material compositions in optimal 

manner. 

The software system, CAD/Chem, is an adaptive intelligent system which acquires 

instances of material composition and corresponding property values, and synthesizes a 

computational model of the material. Subsequently, if a specific set of property values is 

desired, CAD/Chem is able to suggest formulations which would meet the desired goal. 

In most cases, the desired property values are not precise or 'crisp' values but can vary 

over a range of values to different degrees of acceptability. That aspect is accommodated 

though the use of desirability functions, in a manner similar to the use of membership 

functions in Fuzzy Sets. In addition not all properties are of equal importance, and so the 

goal values can be weighted. 
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Finally when appropriate the new material can be specified in an optimal manner, in the 

sense that, if necessary, a least cost formulation could be specified. Other equality and 

inequality constraints can also be met in the search for the optimal composition. 

The system architecture of CAD/Chem is modular. The CAD/Chem system is truly a 

versatile modeling and optimization system suitable for use in support of a variety of 

tasks in materials research including design of experiments, parameter interpretation, 

sensor validation, materials formulation and so on. It is supported by good graphics and 

input/output capabilities, but it owes its power principally to the efficiency of the 

Functional-link and GESA paradigms. 

Through the co-operation of AI Ware Inc., a demonstration version of CAD/Chem 4.5 is 

made available in diskette form, for illustration purposes, together with an accompanying 

manual as Attachment 8. 
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6. APPLICATION OF FUNCTIONAL-LINK AND GUIDED EVOLUTIONARY 

PROGRAMMING TO OPTIMAL CONTROL OF NONLINEAR SYSTEMS 

Neural networks are ideally suited to the tasks of monitoring and control of nonlinear 

dynamic systems especially systems which are 'opaque' in the sense that the behavior 

cannot be described analytically nor modeled simply in some linear manner. 

There are three distinctly different approaches to the task of control. These might be 

called: 

o the 'Backpropagation in time' method, 

o the Inverse Net method, and 

o the Optimal Control method. 

The Backpropagation-in-time method is illustrated schematically in Figure 13. In this 

approach a neural-net model is learned of the system. By this statement, it is meant that 

given the state of the system and the current control action, the neural-net will compute 

the value of the next state. The word 'state' is used in the conventional sense and may 

entail a number of time-lagged values of some vector quantity described the current 

descriptors of the system. 

In control mode, the desired value of the next state is specified and the value of the 

requisite control equation is computed quite simply in a Backpropagation of error 

manner. In control mode all network parameter values are already known having been 

fixed during the training stage. 
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Figure 13 The Modeller/Predictor Neural Net. 

The inverse net approach is illustrated schematically in Figure 14. The same data used in 

the learning of a model of the system could also be used to learn an 'inverse' net shown 

in Figure 14. In this case the inputs are the current system state and the desired value of 

the next state, and the net computes the requisite value of the control action. This is 

clearly feasible but there are cases where the inversion is not unique. If many control 

actions can result in nearly the same value of the next state, then specifying the desired 

value of the next state might lead to an average of the several possible control actions, 

with the average being an incorrect solution. 

The third approach is one that is championed by this research program and is made 

feasible primarily because of the availability of the Functional-link and GESA. It is 

different from the previous two methods in that a trajectory with some particular 

attributes can be specified, and a sequence of control actions which would produce such a 

trajectory in an optimal manner is given as the solution. 
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Figure 14 The Neural Control-Action Generator. 

A detailed discussion of this topic is given in Attachment 10, a publication by members 

of this research team [20]. 

GESA may also be used for automatic formulation of optimal fuzzy control. This is a 

subject matter that is not directly related to that of this section but is related nevertheless 

to the task of intelligent controls. That topic is described in Attachment 11, also a 

publication which originated from work carried out in this program [21] 

There also exists a commercially available software product called the Process Advisor 

[trademark of AI Ware, Inc.] which models dynamic systems, and a product called 

Neusight [trademark of Pegasus Inc.] which applies such technology to the optimal 

control of systems. Both of these products are based on the functional link and GESA. 
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7. THE ROLE OF SELF-ORGANIZATION IN DATA ANALYSIS 

In the analysis and management of multidimensional data, ultimately the most basic task 

is that of self-organization. In self-organization, the data points need to evolve a way of 

describing the manner in which they are distributed in the multidimensional space of the 

data points. This is not an easy task because the density distribution may be very 

complex, topologically speaking. 

A conventional way of proceeding is to attempt  to form clusters of data points, and 

hierarchies of clusters. Often such clusters might also be categories, in the sense that all 

data points in any one cluster also have certain characteristics in common. In any event, 

with use of clusters and hierarchies of clusters, a very large number of data points (or 

patterns) can be stored and retrieved efficiently. This can be the basis for use of such data ' 

structures as associative memories. After self-organization, all the data points, or objects, 

or equivalent^, patterns, are in one cluster or other. One of the attributes of a cluster is 

therefore the list of the identifiers of all its member patterns. Other attributes are the 

characteristics common to all members of the cluster, perhaps to varying degrees. Any 

new pattern is readily determined to be closer to one of the existing clusters, more so and 

to any of the other clusters. If it is 'within' the bounds of that cluster then some prediction 

can be made regarding its characteristics, if not, then it might be the basis for a new 

cluster, with new characteristics. 

In one of the efforts of this program, in the development of the Rapid Foundry Tooling 

System, there was opportunity to assess the feasibility of using self-organization to 

evolve a system architecture which could be used for trouble shooting in the practice of 

metal casting. 
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Some troubleshooting capability can be demonstrated using the diskette made available 

as Attachment 12. Using that diskette it can be demonstrated that any new casting with 

defects can be recognized to be similar to one or more cases experienced previously. In 

other words, a faulty casting can be 'recognized' to be so in a rather broad manner, the 

probable causes are identified and so are some of the likely 'cures'. Such matters can also 

be implemented with static links in some hypertext manner, but that approach would not 

be able to support the same type of robust and efficient search and retrieval capability 

provided by the associative memory. 
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8.    REDUCED   DIMENSION   REPRESENTATION    OF   DATA:    THE 

CONSTRAINED VARIANCE APPROACH. 

This section continues the line of thought of the previous section but in a different vein. 

It is difficult to make sense out of a large body of multi-featured pattern data. Actually 

the body of data need not be large; even a set of 400 patterns each of six features would 

be quite difficult to 'understand'. The idea of self-organization has to do with that type of 

situation and can be understood in terms of two main approaches to that task. In the one 

case, endeavor is directed to discovering how the data are distributed in pattern space, 

with the intent of describing large bodies of patterns more simply in terms of multi- 

dimensional clusters or in terms of some other distributions, as appropriate. This is the 

dominant concern underlying the ART[22], ISODATA [23] and feature map [24] 

approaches. 

In the other case, effort is devoted to dimension reduction. The idea is that perhaps the 

original representation with a large number of features is redundant in its representation, 

with several features being near repetitions of each other; in which case principal feature 

extraction accompanied by dimension reduction would simplify the description of each 

and all the patterns. Clustering could be subsequently achieved in the reduced dimension 

space. The Karhunen-Loeve (K-L) transform[25], neural-net implementations of the K-L 

transform^], and the auto-associative memory [27] are all directed to principal 

component analysis (PCA), feature extraction and dimension reduction. 

Actually the two streams of activity are not entirely independent. For example, the ART 

approach has a strong winner -take-all mechanism in forming the clusters. It can be 

viewed as 'extracting' the principal prototypes, and forming a reduced dimension 
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description in terms of a few category prototypes. Similarly, the feature map approach 

aims at collecting similar patterns together through lateral excitation-inhibition so that 

patterns with similar features are mapped into contiguous regions in a reduced dimension 

feature map. That method clusters and reduces dimensions also. 

The work of this program gave rise to efforts aimed at principal component analysis, in 

nonlinear manners, so as to reduce dimensions and perhaps in that way reveal what was 

important in any description of material composition or material process. Those efforts 

induced the development of a new approach to the task of self-organization. The idea is 

that data be subjected to a nonlinear mapping from the original representation to one of 

reduced dimensions. The mapping is implemented with a multilayer feedforward neural 

net. The parameters of the net are learned in an unsupervised manner based on the 

principle of conservation of the total variance in the description of the patterns. 

The concept of dimension reduction is strange in itself. In what way can a reduced- 

dimension description of a body of pattern data be representative of the original body of 

data? The answer is known for the linear case but is more difficult to detail in the general 

nonlinear case. Instead, in the present discussion, the approach is simply described in 

terms of conservation of variance in connection with a nonlinear transformation, and the 

consequences of such mapping are examined for some bodies of data in Attachment 12 

[28]. 

First of all, this method was applied to a body of data of bench-mark standing, regarding 

the quality of various gasoline blends. In the reduced dimension representation, the result 

of this new type of mapping yielded a 2D display similar to what might be expected from 

a feature map mapping, in an interesting manner. Patterns which have similar research 

octane ratings are mapped automatically into contiguous regions in the 2D reduced 
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dimension mapping. There is no formation of clusters. Instead a rather general spread out 

measure of similarity and associated correspondence in octane rating can be visualized. It 

becomes clear that high octane rating can be realized in manner ways and there is 

guidance towards the formulation of improved blends. 

Application of the method to complex sensor data indicated, once again, that patterns 

representing 'fault' conditions became self-organized into contiguous regions, albeit of 

rather free form, in 2D, distinct from the patterns representing 'no-fault'. 

In both of those two mappings, the category or property value must have been associated 

strongly with the pattern descriptions. The reduced-dimension mapping merely made that 

circumstance more obvious and more easily visualized. In yet another case the same 

approach was applied to a sparse body of data, sparse in the sense of not having many 

exemplars but also sparse in the sense that many feature values were missing so that in 

fact only a small subset of features were available for this exercise. The data were for a 

body of crystal structure parameters for semiconductors and there was interest in seeing 

whether certain regions of crystal structure 'space' was associated with low bandgaps. 

The reduced 2D map did give hints as to what regions might be fruitful for further 

exploration. 

All these matters are described in some detail in Attachment 12. 
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9. SUMMARIZING REMARKS 

A very large amount work was carried out under the sponsorship of Air Force Contract 

No. F33615-87-C-5250. That work was carried out at Case Western Reserve University, 

at Wright Laboratory and also at various facilities and companies which were 

collaborating in research and development with Wright Laboratory; these latter sites 

included Kelley Air Force Base in San Antonio, TX, and AI Ware Inc. in Cleveland. 

The contract was from February, 1988 to December 1995, but this report covers only the 

period from October 1992 to December 1995. Previous work had been reported in the 

Interim Report WL-TR-934021. 

Even so only a portion of the work and results are addressed by this report, and then 

mostly through the device of referring the reader to reprints or preprints of papers 

authored by researchers of this program, publications in established technical journals of 

archival quality. The report is divided into two volumes, for the convenience of the 

reader, the second volume being the collection of the attached publications and two sets 

of diskettes. It has not been possible to include all the technical journal papers published. 

It has not been possible to address all the work done either. Otherwise the process of 

report preparation would have been stulifying and a multi-volume report would have 

mind-numbing. 

As it is, this report is happy to conclude with the thought that this effort helped to launch 

four vigorous original streams of innovation into the practice of adaptive, parallel, 

distributed computing, these four being the functional-link net, guided evolutiona 

programming with simulated annealing (GESA), the self-organizing associative memory 
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and the constant variance mapping for 2D displays. These methods have found 

applications in materials research and have given rise to significant commercial products. 
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